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The Proximal Tubule and Albuminuria: Really!
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ABSTRACT
Recent data highlight the role of the proximal tubule (PT) in reabsorbing, processing,
and transcytosing urinary albumin from the glomerular filtrate. Innovative techniques
and approaches have provided exciting insights into these processes, and numerous
investigators have shown that selective PT cell defects lead to significant albuminuria,
even reaching nephrotic range in animal models. Thus, the mechanisms of albumin
reabsorption and transcytosis are undergoing intense study. Working in concert with
megalin and cubilin, a nonselective multireceptor complex that predominantly directs
proteins for lysosomal degradation, the neonatal Fc receptor (FcRn) located at the
brush border of the apicalmembrane has been implicated as the “receptor”mediating
albumin transcytosis. The FcRn pathway facilitates reabsorption and mediates trans-
cytosis by its pH-dependent binding affinity in endosomal compartments. This also
allows for selective albumin sorting within the PT cell. This reclamation pathway min-
imizes urinary losses and catabolism of albumin, thus prolonging its serum half-life. It
may also serve as a molecular sorter to preserve and reclaim normal albumin while
allowing “altered” albumin to be catabolized via lysosomal pathways. Here, we criti-
cally review the data supporting this novel mechanism.
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Although the importance of urinary
albumin in disease progression is known,
the key mechanisms mediating the pres-
ence and toxic effects of albuminuria
remain to be determined. Recently, the
quantitative role of the glomerular fil-
tration barrier (GFB) and the proximal
tubule (PT) cell (PTC) in the develop-
ment of albuminuria has been reex-
amined. Different lines of evidence,
from multiple investigative teams, now
suggest that the filtration of albumin,
under physiologic conditions, is greater
than previously determined. These data
suggest an increased clinical role for the
PT in minimizing albuminuria through
the reabsorption of albumin. Emerging
data also suggest that both glomerular
permeability and PTCs play fundamen-
tal, physiologic, synergistic, interactive,
and dynamic roles in the renal handling

of albumin. Furthermore, it appears that
PTCs, especially in the S1 segment, have
specific mechanisms for efficiently and
effectively reabsorbing and transcytosing
albumin (reclamation). Therefore, the
purpose of this review is to describe the
emerging data regarding PTC albumin
handling and provide a framework for
considering future exciting, insightful,
and novel studies with direct clinical
relevance.

This review is not intended to debate
the important role of the GFB but to
emphasize that the PTshould be consid-
ered important both under physiologic
and pathologic conditions. We believe
that glomerular or PTC defects can and
do result in proteinuria. Specifically, we
outline current data supporting PT up-
take of albumin and mechanisms of
reabsorption and transcytosis, and we

propose a mechanism for intracellular
sorting between degradation and trans-
cytotic pathways based on pH-depen-
dent binding.

DYSFUNCTIONAL PTCS LEAD TO
ALBUMINURIA

For nearly 30 years albumin has been
known to be reabsorbed by PTCs.1 Al-
bumin is a 66-kD, 585–amino acid, neg-
atively charged globular protein found
in plasma of mammals. It is produced
and excreted by the liver and is the
most abundant protein in plasma. Its
half-life is approximately 35–39 hours
in rodents and an impressive 19 days in
humans.2 Mammals have developed im-
portant cellular mechanisms for mini-
mizing albumin turnover, thus enabling
a long plasma half-life. Serum albumin
is multifunctional as it buffers pH; pro-
vides oncotic pressure; and is a carrier
protein for a wide range of molecules,
including amino acids, fatty acids, inor-
ganic ions, medications, and metabo-
lites.3,4 Preventing or reducing urinary
albumin excretion thus makes the
kidney a key player in “protecting” the
organism from excessive loss of albumin
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and its ligands. Albumin loss in urine has
long been used as a marker of kidney in-
jury, whether it originates from glomer-
ular dysfunction, defective PT reabsorp-
tion, or a combination.

Multiple investigative teams, using
various preclinical model systems, have
shown the PTCs, especially the S1 seg-
ment, have effective and efficient mech-
anisms of reabsorbing, transcytosing,
and processing filtered albumin. Mech-
anisms for PTC uptake and metabolism
of filtered albumin (Figure 1) include
receptor-mediated clathrin-dependent
endocytosis and fluid-phase endocytosis.
Both processes can result in lysosomal
targeting for degradation (degradation
pathway),5,6 and new data indicate that

transcytosis moves albumin across the
cell from apical to basolateral membranes
into the extracellular fluid (reclamation
pathway).7–9 The overall quantitative im-
portance of these processes is indicated
by resulting albuminuria when selective
defects occur in the involved tubular
transport processes (Table 1). Individual
disruption of numerous specific PTC
processes, have been documented to
cause proteinuria and albuminuria. In
most cases the increase is mild to mod-
erate, including loss of megalin and
cubulin. Defects in the well studied mul-
tiligand endocytic receptor complex,
megalin and cubilin, yield increased lev-
els of albuminuria and proteinuria, sug-
gesting a role in albumin reabsorption and

metabolism.5,6 Bardoxolone methyl, an
anti-inflammatory mediator, is known
to cause significant albuminuria by de-
creasing renal expression of megalin but
not cubilin.10 Rats receiving total-body
irradiation lose the ability of albumin
and megalin to bind to cubilin, resulting
in albuminuria.11 Knockoutmice lacking
the apical Na+-H+ exchanger isoform 3
(NHE-3)12 develop albuminuria. Muta-
tions in ClC-5 in apical endosomes in
three different mouse models, as seen in
Dent disease, have demonstrated defec-
tive receptor-mediated endocytosis and
fluid-phase endocytosis, deficient endo-
somal acidification, decreased internali-
zation of the sodium-phosphate cotrans-
porter 2 and NHE-3, and proteinuria.13–15

Figure 1. Albumin filtration across the glomerulus is greater than previously thought and reclaimed by the PTC, especially S1 cells. (A)
Albumin filtered at the level of the glomerular capillaries into the Bowman space is taken up after binding by the megalin-cubilin receptor
complex or perhaps by the FcRn lining the brush border of proximal tubular cells. Albumin is internalized to PTCs by receptor-mediated
endocytosis via clathrin-coated vesicles and fluid-phase endocytosis. From there it can be catabolized via lysosomal degradation or can be
transcytosed. Albumin fragments in the urinary lumen result from lysosomal exocytosis or peptide hydrolysis by apical membrane pro-
teases. (B) In vivo image of 25-micron three-dimensional volume showing amounts of Texas red–labeled albumin uptake into PTCs (arrow),
especially the S-1 segment (S1). G, glomerular capillaries. Bar=20 mm.
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Defective endocytosis in ClC-5 knockout
mice is now known to be due to traffick-
ing defects related to selective loss of
brush-border cubilin and megalin, caus-
ing albuminuria.16 Rab 38 dysfunction,
or lack of function, is suggested to
play a significant role in albuminuria in
rats by decreasing endocytosis of colloi-
dal gold-coupled albumin without mod-
ifying glomerular permeability.17 The
degree of proteinuria correlated best
with the Rab 38 mutation, rather than
themutation in FawnHoodedHyperten-
sive congenic rat strains associated with
increased albumin permeability.18,19 Sta-
tins have become of interest recently in
albumin reabsorption. Studies have
shown that statins may inhibit guanosine
triphosphatase prenylation, which re-
duces PTendocytosis and enhances albu-
minuria and proteinuria.20–22 Finally, in
rats with selective PTC injury induced by
using D-serine23 or by expressing and ac-
tivating the diphtheria toxin receptor on
PTCs,24–26 heavy albuminuria occurs
without associated glomerular morpho-
logic injury, neither histologic nor elec-
tron microscopic.25,26

These recent studies with diphtheria
toxin, by three independent groups, have
emphasized the magnitude of filtered
albumin by selectively injuring the PTC,
thus causing global PTCdysfunction and
allowing all filtered albumin to end up in
the urine. Thus, activating the receptor
with diphtheria toxin24–26 caused
marked and sustained dose-dependent

selective PTC injury that resulted in ne-
phrotic range proteinuria.

IMPORTANCE OF PTC ALBUMIN
REABSORPTION

There remains considerable controversy
around glomerular albumin permeabil-
ity. Numerous techniques and experi-
mental approaches have been used to
determine the quantitative role of glo-
merular albumin permeability in al-
buminuria. Values for the glomerular
sieving coefficient of albumin have
ranged from ,0.001 to 0.07 under vari-
ous physiologic and pathologic condi-
tions using different techniques.27 Of
particular importance has been the use
of Munich–Wistar (MW) rats that have
surface glomeruli, allowing for direct dy-
namic visualization, instrumentation,
and manipulation. MW Fromter
(MWF) rats have many surface glomer-
uli, have been used in micropuncture
studies, and spontaneously develop hy-
pertension and progressive albuminuria
beginning by week 8 and increasing to
urinary albumin excretion.300 mg/24
hours by week 32. By week 40, 50% of
glomeruli are sclerotic.28–30 The Hey-
mann nephritis rat model has also been
used to study urinary protein loss and
was significant in identifying megalin,
found largely at the apical membrane of
the PTC, as an autoantigen in membra-
nous glomerulopathy.31 MW Simonsen

rats have fewer surface glomeruli and
do not develop age-related spontaneous
albuminuria under physiologic condi-
tions. Mice unfortunately lack surface
glomeruli, and therefore direct visual-
ization methods cannot be performed,
unless pathologic processes, such as
ureteral obstruction for several days,
are used.32 This results in formation
of atubular glomeruli and extensive al-
terations and remodeling of PT and
glomerular cells.

Micropuncture studies in MWF rats
with surface glomeruli measured low
glomerular filtration of albumin in fast-
ing states, with a glomerular sieving
coefficient (GSC) of 0.00057–0.00062,
consistent with low amounts of mea-
sured albumin observed in excreted
urine (,30 mg/d).33–38 This has been
attributed to the charge barrier and size
selectivity at the glomerular filtration
barrier. Previous in vivo rat filtration
studies and noninvasive studies using
isolated perfused rat kidneys showed
a much higher GSC of albumin using
[3H]albumin. Measuring total radioac-
tivity in urine and inhibiting protein up-
take in the PTC showed that the GSC of
albumin may actually be approximately
0.074- to .120-fold greater than previ-
ously thought.39 High GSCs for albumin
were also observed by another group us-
ing glomerular volumetric analysis in rat
glomeruli (0.0260.01).40 This finding
was strengthened by other groups show-
ing that high-molecular-weight proteins

Table 1. Data implicating a role for the PT in albumin processing and/or albuminuria

Process Implicated or Defective Reference

D-Serine–induced PTC injury Carone and Ganote, 197523

Megalin-cubilin complex Birn, et al., 20005; Christensen and Birn, 20016; Wang et al., 200515

ClC-5 knockout Piwon et al., 200013; Christensen et al., 200316

Total-body irradiation Yammani et al., 200211

NHE-3 knockout Gekle et al., 200412

Statins Sidaway et al., 200420; Verhulst et al., 200421; Atthobari et al., 200622

Rab 38 Rangel-Filho et al., 200518; Williams et al., 201119; Rangel-Filho et al., 201317

Increased GSCs Russo et al., 20077

Transcytosis Russo et al., 2007,7 Sandoval et al., 20128

FcRn Sarav et al., 2009100

Carbon nanotubes Ruggiero et al., 2010126

Bardoxolone Reisman et al., 201210

Diphtheria toxin–induced PTC injury Grgic et al., 201225; Sekine et al., 201224; Zhang et al., 201226

Multiple PTCdefects have been shown to lead to significant albuminuria. Notably, selective PTC injury using dophtheria toxin induction, essentially eliminating any
PT uptake of albumin, resulted in severe, but reversible, albuminuria without histologic or electron microscopic changes.
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and dextrans, which have similar radius
and molecular mass as albumin (3.6 nm
and 66 kDa) and are not reabsorbed
through receptor-mediated endocyto-
sis, had similarly high GSCs in nor-
mal kidneys (pancreatic isoamylase:
3.4 nm, 45 kD, GSC of 0.0341; horserad-
ish peroxidase: 3.0 nm, 40 kD, GSC
of 0.06; Bence-Jones protein: 2.8 nm,
44 kD, GSC of 0.0942). Recent data using
enhanced scanning electron micros-
copy have also shown that podocyte
slit-diaphragm pore size is much larger
than previously thought and is suffi-
ciently large enough to allow for albu-
min filtration.43

Intravital in vivo two-photon micros-
copy studies,which allow four-dimensional
analysis (volume and time) of physio-
logic processes, permit direct visuali-
zation and quantification of glomerular
filtration and quantitation of PTC up-
take.44–46 This has allowed direct visual-
ization and determination of GSCs for
albumin (GSCA), subcellular traffick-
ing, transcytosis, catabolism, and rec-
lamation of proteins from glomerular
filtrate by PTCs.45,46 Through use of
this technique, MW Simonsen rats,
which do not develop spontaneous al-
buminuria, have a GSCA of 0.034 under
physiologic fed states, while simulta-
neously measuring a GSC of 1.0 for in-
ulin and approximately a 500-fold lower
GSC for high-molecular-weight dex-
trans.7,47 The GSCA for MW Simonsen
rats in fasting states is considerably
lower at 0.016.8 MWF rats, which de-
velop albuminuria spontaneously with
aging, have a lower fed GSCA of 0.010
and also display a GSCA reduction in
fasting states to 0.007. Because micro-
puncture studies were always performed
on fasting MWF rats, these studies
indicate a much closer agreement be-
tween micropuncture studies and two-
photon studies than previously reported
when comparing two different rat
strains.8,48,49 They also indicate that feed-
ing has a substantial effect on urinary al-
bumin filtration.8

Controversy remains regarding the
extent of glomerular filtration of albu-
min and similar-sized dextrans, used to
model albumin filtration, as observed by

two-photon microscopy. Detection of
albumin in the glomerular filtrate re-
quiresmaximizing the signal throughuse
of the correct fluorescent probe, depth of
study, site selection, detector sensitivity,
and particular detail to background sub-
traction of existing autofluorescence.8,50

Work by Peti-Peterdi and Tanner us-
ing two-photon microscopy reported
values significantly lower than we have
published,51–53 which are closer to
those from micropuncture studies.
Peti-Peterdi and Tanner collectively
pointed to multiple aspects of our studies
as being causes for our elevated values.
Addressing their points with data,8 we re-
futed these assertions. Of particular im-
portance, our most recent publication
points to photo-multiplier tube detector
offset settings as the factor probably ex-
plaining the observed differences.50

These settings determine detector sensi-
tivity and can cause variation in albumin
permeability values spanning several or-
ders of magnitude within the same glo-
merulus. Nakano et al.51 state in their
Methods section that the detector offset
was adjusted for each individual glomer-
uli to reduce nonspecific fluorescence
(autofluorescence) before and after dye
injections. This is a departure from text-
book approaches to correctly adjusting
detector settings.54 This approach was
probably used to constrain tissue auto-
fluorescence intensity to within the
same low values derived from electronic
detector noise; in fact, autofluorescence
is a tangible phenomenon that when
minimized by adjusting detector offset
results in a progressively marked de-
crease in detector sensitivity. This lack
of sensitivity is supported by a recent
publication by Schießl and Castrop,55

which also reports very low permeability
values for albumin. In their work, the off-
set values used in their background im-
age (Figure 1B, blue warning marker in-
dicating values at zero) are an identical
match to offset values in our study50

showing decreased detector sensitivity
to low-intensity fluorescence. A detailed
method of our approach to determining
GSC values can be found elsewhere.56

Therefore, it appears the filtration of al-
bumin across the GFB is dynamic with

regard to feeding, varies between rat spe-
cies, and is probably greater than previ-
ously determined by micropuncture
studies.

ENDOCYTOSIS BY THE PT

Classically, cellular uptake of proteins and
other molecules by endocytotic pathways
has been attributed to receptor-mediated
endocytosis by apical membrane-bound
receptors, such as megalin and cubilin,
clustering into clathrin-coated pits.
Coated pits make up between 0.4%
and 3.8% of the cell’s surface, depending
on the cell type.57 These pathways have
been studied extensively, and numerous
reviews exist.58,59 In addition, other
mechanisms of protein internalization
have also been described, including
caveolin-dependent internalization and
fluid-phase endocytosis. Molecules en-
docytosed in this manner are similarly
routed to the sorting endosomal com-
partment and either are degraded
through lysosomal pathways or undergo
transcytosis back into circulation.60

Albumin uptake by nonselective fluid-
phase endocytosis is probably a quantita-
tively important process in PTCs, as
shown by the rapid cellular uptake of
molecules not having receptors on the
apical membrane, such as neutral fluo-
rescent dextrans (markers of fluid-phase
endocytosis).61,62

The endocytic apparatus is found
throughout the PT, although clathrin-
coated pits and vesicles are notably fewer
in the S3 segment.63 Expectedly, protein
reabsorption and degradation are great-
est in the S1 segment of the PTCs and
least in the S3 segment.64–66 Kinetic
studies of the rat PT have shown that in-
ternalization of cargo at the brush bor-
der is highly active. The membrane and
trapped fluid (luminal fluid) contained
in the apical membrane invaginations
are internalized within 78 seconds.67

This rapid rate of uptake means a great
deal of luminal fluid is internalized via
endocytic vesicles and probably indi-
cates an important role for fluid phase
endocytosis. However, quantifying the
overall importance of fluid-phase
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endocytosis has been difficult because all
endocytic vesicles contain fluid and thus
luminal contents.

Albumin degradation can occur in
multiple sites. Degraded lysosomal albu-
min fragments were initially thought to
be completely recycled back into circu-
lation.1 But newer studies using isolated
perfused rat kidneys,68 in vitro studies
with HK-2 cells,69 and in vivo models
with Sprague-Dawley rats have shown
that albumin can be rapidly degraded
into small peptides and released back
into the tubular fluid.66 Use of the
CD2AP knockout mouse showed that
lack of lysosomal PTC albumin degrada-
tion resulted in high levels of intact al-
bumin in urine.68,70 Recent technologies
using opossum kidney epithelial cells
suggest that albumin uptake and degra-
dation are significantly augmented by
flow and fluid shear stress, not static
conditions.71 Urine proteases at the api-
cal brush border can likewise hydrolyze
and degrade tubular albumin into uri-
nary fragments.72 However, a note of
caution is necessary. Modeling in vivo
endocytosis to that occurring in cultured
cells can be very revealing but also mis-
leading. For example, in vivo PTCs
have a rate of endocytosis that is far
greater in magnitude than that of cul-
tured PTCs.67,73,74 In addition, the rate
of apical endocytosis is many times that
of basolateral endocytosis in vivo, but the
two are equivalent in cell culture.67,74,75

Therefore, one must not overinterpret
cell culture data. Finally, intravenously
injected albumin remains intact within
the serum and is partially catabolized
within PTCs.76

THE MEGALIN-CUBILIN COMPLEX

Themegalin-cubilin receptor complex is
well studied, and myriad reviews have
described its function and role in protein
absorption andmetabolism.6,59,77,78 The
dissociation constant (Kd) of albumin to
cubilin is estimated at 0.63mMat a pHof
7.0,5 resulting in a high-affinity, low-
capacity pathway of endocytosis that pri-
marily targets product to the lysosome
for degradation. Subsequent lysosomal

processing and trafficking of resulting
amino acids back to the basolateral
membrane for transport into plasma oc-
cur. Megalin and cubilin work in concert
to reabsorb.40filteredmolecules.6,59,79–81

Without this mechanism of retrieval and
preservation, protein loss, malnutrition,
vitamin deficiencies, and other conse-
quences would ensue. Although both
megalin82 and cubilin5 can bind albu-
min, megalin’s principal role seems to
be in catalyzing the retrieval and internal-
ization of apical cubilin-albumin com-
plexes from glomerular filtrate.

This multireceptor retrieval system is
thought to have the capacity to process
approximately 30–50 mg of albumin
daily in mice.83 Disruption of this mech-
anism results in proteinuria and albu-
minuria. In megalin knockout models,
the internalization of endogenous li-
gands bound to apical cubilin, especially
cubilin-albumin complexes, is markedly
reduced. Urinary albumin excretion is
increased 6-fold in cubilin knockout
mouse models83 and in humans,84 al-
though neither reaches nephrotic range,
suggesting that an additional mecha-
nism for albumin reabsorption exist. In
fact, a missense mutation in one of the
CUBN domains that binds megalin was
found in microalbuminuric patients in
the general population and in patients
with diabetes using a genome-wide asso-
ciation study.85 In two siblings with in-
termittent proteinuria reaching 2 g daily,
exome sequencing was used to identify a
homozygous frameshift mutation in cu-
bulin, resulting in decreased albumin
uptake in the PT.86 Interestingly, mice
deficient in megalin in addition to cubi-
lin did not exhibit anymore albuminuria
than mice with cubilin deficiency
alone,83 suggesting that megalin’s prin-
cipal role is to facilitate cubilin-albumin
internalization. In Dab2 knockout
mice (Dab2 is a protein involved in
coated pit formation), mild protein-
uria was seen.87 Patients with type 1
diabetes and albuminuria had signifi-
cantly elevated urinary levels of mega-
lin and cubilin, suggesting possible PT
shedding of these proteins as a contrib-
uting factor to albuminuria in patients
with diabetes.88 Moreover, in early

streptozotocin-induced diabetes in
rats, the GSCA was unchanged but
PTC uptake of albumin was markedly
reduced.47

NEONATAL FC RECEPTOR

The neonatal Fc receptor (FcRn), dis-
covered by Jones and Waldmann in
1972,89 is a heterodimer with class I
MHC-like properties that contains a
membrane-bound heavy chain and a
b2-microglobulin light chain. Its name
originates the fact that it was purified
and sequenced by Simister and Rees in
198590 from the intestine of an 11-day-
old rat. Wild-type FcRn has two distinct
and separate binding sites for albumin
and IgG91; binding is low affinity and
high capacity at a physiologic pH, with
increasing affinity occurring at a lower
pH. In humans, FcRn is derived from
the FCGRT gene encoded on chromo-
some 19 located outside of the MHC
class I locus on chromosome 6. Rat and
mice FcRns are 91% identical, and both
are encoded on chromosome 7. Human
FcRn has one N-glycan moiety, and its
molecular mass is approximately 42–44
kD, while rat FcRn’s molecular mass is
48–52 kD (attributable to three addi-
tional N-glycan moieties).92 It is known
to reside on vascular endothelium; on
epithelial cells of the proximal small
intestine, liver, spleen, and lung; on pla-
cental syncytiotrophoblasts; on poly-
morphonuclear neutrophils, monocytes,
and phagocytes; on dendritic cells; and in
the kidney.90,93–98 Within the kidney,
FcRn is found in the vascular endothelia,
podocytes, cortical collecting duct, and
PT epithelial cells.99 It has been labeled
by immunofluorescence in human kid-
ney sections at the brush border of
PTCs and in endosomes.99

FcRn is known to transport albumin
across membranes, preserving albumin’s
function and lifespan as a carrier pro-
tein, colloid, and buffer, and one that
maintains oncotic hemostasis.100 Its
role in fetal immunity by transporting
maternal IgG across neonatal placenta
and by transcytosis across neonatal in-
testinal cells is well known.90,101–103 In
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fact, neonatal overexpression of FcRn
in transgenic mice and rabbits increases
serum albumin concentrations and fur-
ther augments humoral immunity, re-
sulting in a 3- to 10-fold increase in
IgM and IgG concentrations in se-
rum.104,105 It is thought that elevated
immunoglobulin levels would not in-
terfere with albumin processing be-
cause of the distinct binding sites for
albumin and immunoglobulins, but
this concept has not been tested. FcRn
mediates transcellular IgG transport in
maternal milk during lactation to the
newborn.106,107 FcRn is also thought
to preserve IgG and confers humoral

immunity by podocyte clearance of
IgG from the GBM.108 Finally, FcRn is
felt to mediate transcytosis and
recycling of IgG by PTCs back into cir-
culation.109 The mechanism of FcRn-
mediated transcytosis has been well
studied in the small intestine, and its
role in IgG endocytosis via clathrin-
coated pits at low luminal pH is
known.110,111 In addition, data exist
for other tissues for IgG transport,
such as pneumocytes,112 endothelia of
small arterioles and capillaries of skel-
etal muscle and skin,93,113 and vascular
endothelia of the central nervous sys-
tem and the choroid plexus.114

ROLE OF FCRN IN PTC ALBUMIN
PROCESSING

Although not yet fully understood, the
role of FcRn appears to be that of in-
tracellular selection, sorting, and preser-
vation of reabsorbed albumin and IgG.
FcRn is concentrated into the apical area
in the PT. Whether it participates in
luminal albumin binding is not known,
but this is not favored by the luminal pH.
However, the megalin-cubilin–bound
albumin within the clathrin-coated
pits, and fluid-phase endocytosis vesicles
undergo pH reduction to approximately
5.0. At the low pH found in endosomes,
albumin dissociates from megalin-
cubilin, while FcRn’s affinity to bind
both IgG and albumin increases dramat-
ically.90,91,100,115 Thus, albumin is capa-
ble of moving from a low-capacity
lysosomal degradation pathway39,116,117

to a high-capacity pathway of transcyto-
sis and recycling mediated by FcRn
based on inherent binding properties of
the receptors.39,118–120 Binding studies
have shown that FcRn has a single bind-
ing site for albumin that is distinct from
the IgG site and that both these interac-
tions are pH dependent. The equilib-
rium dissociation constant, Kd, is much
weaker at a pH of 7.0 (34–408 mM)
versus a pH of 5.0 (0.2–0.7 mM).91 Con-
sequently, if albumin is internalized
while bound to the megalin-cubulin
complex and is trafficked to the late en-
dosomes, it encounters acidic pH and a
“handoff” of albumin to the FcRn recep-
tor can occur, thus directing it down the
transcytotic pathway. When the transcy-
totic vesicle fuses with the plasma mem-
brane and encounter neutral physiologic
pH, a rapid dissociation of albumin from
FcRn will occur, thereby releasing it to
the interstitium and ultimately back into
the circulation via the FcRn-mediated
pathway in the endothelium.110,115,121

The FcRn receptor is recycled back to
the apical membrane or apical compart-
ment, ready for another cycle of albumin
transcytosis. Of critical importance for
albumin dynamicsmay be howmodified
albumins (i.e., glycated, carbamylated,
and various drugs bound to albumin)
affect the albumin–FcRn pH-dependent

Figure 2. FcRn mediates pH-dependent transcytosis and intracellular sorting of re-
absorbed albumin. Albumin is reabsorbed via both receptor-mediated clathrin-coated pits
into vesicles (CCV) (1a) and by fluid-phase (clathrin-negative) endocytosis (1b). Following
endocytosis, endosomal acidification occurs (2), causing dissociation of albumin from re-
ceptors, such as megalin-cubilin complexes. However, acidification enhances albumin
binding to FcRn throughout endocytic compartments; thus, there is exchange of albumin
from the megalin-cubulin complex to FcRn. Within the endosomal-sorting compartment
(ESC), albumin is directed toward lysosomal degradation or the transcytotic pathway (3).
Transcytosis occurs by both vascular and tubular structures mediating albumin delivery to
the basolateral membrane (4). Upon fusion with the basolateral membrane, the increase in
pH of the extracellular environment causes dissociation of albumin from FcRn; FcRn is then
recycled back to the apical membrane via the recycling compartment. It is possible that
albumin’s binding to FcRn is reduced by alterations, such as glycosylation and carbamy-
lation; thus, transcytosis of albumin would not occur and albumin would enter the lyso-
somal pathway. This would provide an intracellular molecular sorting mechanism to
preserve physiologic albumin and facilitate catabolism of chemically altered albumin. FPV,
fluid-phase vesicle; L, lysosome; RC, recycling compartment; TJ, tight junction.
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binding interaction. For instance, in-
creased binding at a neutral pH or de-
creased binding at an acidic pH may
both result in more targeting to lyso-
somes (Figure 2).

The first direct evidence for trans-
cytosis of albumin came from PTmicro-
perfusion studies.1 Subsequent studies
using transmission electron microscopy
immunogold studies revealed albumin
uptake across the apical membrane and
release across the basolateral membrane
of PTCs.7 Subsequent two-photon stud-
ies showed actual intracellular vesicles
and tubules uniting with the basolateral
membrane and releasing fluorescently
labeled albumin into the interstitium.8

Finally, Tenten et al.9 showed that both
negatively charged and neutral albumin
released from transgenic podocytes was
transcytosed from the filtrate into the
blood. Furthermore, genetic deletion of
the FcRn receptor in these mice abol-
ished transcytosis of both types of albu-
min. These data prove FcRn is responsible
formediating albumin transcytosis in the
PTC. However, the magnitude of this
process remains to be determined.

FUNCTIONAL SIGNIFICANCE OF
PTC RECLAMATION VIA FCRN

FcRn knockout mice lacking the neonatal
Fc receptor and its ability to recyclefiltered
protein have been shown to result in
plasma albumin with shorter half-lives
(reduced to 75% of wild type) and plasma
concentrations that are reduced by about
50%.100,122,123 This was shown to result
from greater catabolism and clearance of
albumin.122 Unfortunately, this study did
not quantify urinary albumin excretion.
In another study, FcRn knockoutmice ex-
hibitedmore albumin at the brush border
and a modest increase in fractional excre-
tion of albumin.100 Mice that have b2-
microglobulin or FcRn mutations have
reduced half-lives of both IgG and albu-
min,123,124 and b2-microglobulin
knockout mice (which are therefore FcRn
deficient) have increased urinary IgG ex-
cretion and albuminuria.125

PT-specific FcRn was further impli-
cated when FcRn knockout kidneys were

placed in wild-type mice and serum
albumin declined to 40%–50% of base-
line over 3 weeks. Conversely, serum al-
bumin increased as wild-type kidneys
were placed in FcRn knockout mice.100

These data indicate the absence of FcRn
results in increased urinary loss of albu-
min and enhanced catabolism. In PTCs,
the lack of transcytotic pathway would
shuttle all reabsorbed albumin into the
degradation pathway. Further PT-spe-
cific studies are needed to more fully ex-
amine the exact role of FcRn within the
kidney and its function in mediating
transcytosis and preventing lysosomal
degradation of albumin.

CONCLUSIONS

Currently the role of the PTC in albumin
reabsorption and reclamation is being
rewritten. Numerous single-site altera-
tions cause proteinuria, and complete
PTC dysfunction results in a high level of
albuminuria, without histologic or elec-
tron microscopy structural alterations in
the GFB, implying a GSCA greater than
previously believed. This has also been
shown using intravital two-photon im-
aging. Reabsorption of filtered albumin
involves a high-affinity, low-capacity
megalin-cubulin receptor–mediated
process and a low-affinity, high-capacity
process that we believe is fluid-phase en-
docytosis. Data on the neonatal Fc re-
ceptor within the PT cell suggest that
its principal function may be in pH-me-
diated binding, sorting and intracellular
trafficking between transcytosis and
degradation pathways. This latter func-
tion may be decided based on alterations
in albumin binding at low pH to FcRn.
Such a mechanism of selective process-
ing and sorting would be evolutionarily
critical in reclaiming normal albumin
via transcytosis and in the lysosomal ca-
tabolism of chemically altered and po-
tentially harmful albumin. Given the
quantity of albumin reabsorbed daily,
and the prolonged half-life of serum al-
bumin, this is an absolutely essential
process. Two-photon intravital studies
to delineate the roles of altered GFB per-
meability, PTC endocytosis, and the

intracellular trafficking of albumin are
needed in the different animal models
available to offer further insight into
the renal handling of albumin. Addi-
tional reagents and approaches must be
developed to allow assessment in human
diseases.
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